Monotonic (1-note) "Scale" The one-note pattern is not a scale using the traditional definition of a group of notes spanning an octave with no interval greater than a M3. It is included here to help set up later patterns and for completeness.              
!Save_Name Scale Name Formula Alternate Name Formula IanRing Pitch Class # of Mode Enharmonic C Enharmonic G Enharmonic D Enharmonic A Enharmonic E Enharmonic B Enharmonic F# Enharmonic C# Enharmonic F Enharmonic Bb Enharmonic Eb Enharmonic Ab Enharmonic Db Enharmonic Gb Enharmonic Cb
1_1_1_1_Unison Unison R Octave R Analysis {0} 1 Unison C G D A E B F# C# F Bb Eb Ab Db Gb Cb
                                               
  Duotonic (2-note) "Scales" (Intervals)         The two-note patterns (Intervals) are not scales using the traditional definition of a group of notes spanning an octave with no interval greater than a M3. It is included here to help set up later patterns and for completeness.      
      The more common forms of the intervals are here. The full chart is  -->   Enharmonic Intervals Chart                          
                The Mode column is more accurately desrcribed as the complement interval. The two intervals add up to an octave.            Patterns are preserved rather than distilling down to the simplest form enharmonically.    
!Save_Name Interval Link Name Alternate Name Formula IanRing Pitch Class # of Mode Enharmonic C Enharmonic G Enharmonic D Enharmonic A Enharmonic E Enharmonic B Enharmonic F# Enharmonic C# Enharmonic F Enharmonic Bb Enharmonic Eb Enharmonic Ab Enharmonic Db Enharmonic Gb Enharmonic Cb
2_1_1_1_P5 P5 Perfect Fifth Niagari R,5 Analysis {0,7} 1 P5 C,G G,D D,A A,E E,B B,F# F#,C# C#,G# F,C Bb,F Eb,Bb Ab,Eb Db,Ab Gb,Db Cb,Gb
2_1_1_2_P4 P4 Perfect Fourth Honchoshi 2 R,4 Analysis {0,5} 2 P5 C,F G,C D,G A,D E,A B,E F#,B C#,F# F,Bb Bb,Eb Eb,Ab Ab,Db Db,Gb Gb,Cb Cb,Fb
                                               
2_1_2_1_M3 M3 Major Thrid Ditone R,3 Analysis {0,4} 1 M3 C,E G,B D,F# A,C# E,G# B,D# F#,A# C#,F# F,A Bb,D Eb,G Ab,C Db,F Gb,Bb Cb,Eb
2_1_2_2_A5_m6 A5,m6 Minor Sixth Schismatic Sixth R,#5 or R,b6 Analysis {0,8} 2 M3 C,G# G,D# D,A# A,E# E,B# B,Fx F#,Cx C#,Gx F,C# Bb,F# Eb,B Ab,E Db,A Gb,D Cb,G
                                               
2_1_3_1_m3 m3 Minor Third Semiditone R,b3 Analysis {0,3} 1 m3 C,Eb G,Bb D,F A,C E,G B,D F#,A C#,F F,Ab Bb,Db Eb,Gb Ab,Cb Db,Fb Gb,Bbb Cb,Ebb
2_1_3_2_M6 M6 Major Sixth Bohlen-Pierce Sixth R,6 Analysis {0,9} 2 m3 C,A G,E D,B A,F# E,C# B,G# F#,D# C#,A# F,D Bb,G Eb,C Ab,F Db,Bb Gb,Eb Cb,Ab
                                               
2_1_4_1_m7 m7 Minor Seventh Harmonic Seventh R,b7 Analysis {0,10} 1 m7 C,Bb G,F D,C A,G E,D B,A F#,E C#,B F,Eb Bb,Ab Eb,Db Ab,Gb Db,Cb Gb,Fbb Cb,Bbb
2_1_4_2_M2 M2 Major Second Whole Step R,2 Analysis {0,2} 2 m7 C,D G,A D,E A,B E,F# B,C# F#,G# C#,D# F,G Bb,C Eb,F Ab,Bb Db,Eb Gb,Ab Cb,Db
                                               
2_1_5_1_M7 M7 Major Seventh Warao Ditonic R,7 Analysis {0,11} 1 M7 C,B G,F# D,C# A,G# E,D# B,A# F#,E# C#,B# F,E Bb,A Eb,D Ab,G Db,C Gb,Fb Cb,Bb
2_1_5_2_m2 m2 Minor Second Half Step R,b2 Analysis {0,1} 2 M7 C,Db G,Ab D,Eb A,Bb E,F B,C F#,G C#,D F,Gb Bb,Cb Eb,Fb Ab,Bbb Db,Ebb Gb,Abb Cb,Dbb
                Tritone has only one "mode" because the complement is itself.                        
2_1_6_1_D5_A4_Tritone D5,A4 Augmented Fourth Tritone R,b5 or R,#4 Analysis {0,6} 1 Tritone C,Gb G,Db D,Ab A,Eb E,Bb B,F F#,C C#,G F,Cb Bb,Fb Eb,Bbb Ab,Ebb Db,Abb Gb,Dbb Cb,Gbb
  Modal groupings after the first few traditional groups are an organizational structure created by Richard Repp extrapolated from avaiable data sources.                           
  This project would not have been possible without the following most excellent resources:                                    
  The Exciting Universe Of Music Theory by Ian Ring                                      
  All The Scales by William Zeitler                                      
  © Richard Repp 2019 All Rights Reserved